Does kauri dieback disease change soil bacterial community structure? Zoe King¹, Hannah Buckley¹, Gavin Lear², Brent Seale¹, Donnabella Lacap-Bugler¹

Cascades

Piha

extracted.

¹ School of Science, Auckland University of Technology, Auckland, New Zealand, ² School of Biological Sciences, University of Auckland, Auckland, New Zealand

zoe.s.king@autuni.ac.nz

INTRODUCTION

- Kauri (Agathis australis) are an ancient coniferous tree only found in the North Island of New Zealand¹.
- Root rot caused by the soil-borne oomycete Phytophthora agathidicida, has threatened this iconic species since 1972^{2,3,4}.
- Interactions between harmful microorganisms and other plant-associated microorganisms in soil are not well understood.

Figures 1-3: 1) The thinning canopy of a kauri tree. 2) Basal bleeding of a kauri tree. 3) A dead/rotting kauri tree.

OBJECTIVES

- To determine the bacterial community composition of soil surrounding kauri.
- To determine if there is any significant variation in bacterial community composition in symptomatic versus asymptomatic kauri.

METHODS

Four soil samples collected from 96 randomly selected trees, from symptomatic and asymptomatic plots in three locations within the Waitākere Ranges (Cascades, Piha, Huia).

3

4

5

Sequencing on Illumina MiSeq platform.

16S rRNA gene PCR.

Analysis using DADA2⁵ (v.1.24.0) and Phyloseq⁶ (v.1.40.0) via RStudio⁷ (v.4.2.1).

AUI

ACKNOWLEDGMENTS

Special thank-you to Te Kawerau a Maki for allowing us to conduct this research. This work was funded by the Ministry of Business, Innovation and Employment (Ngā Rākau Taketake - Myrtle Rust and Kauri Dieback Research, C09X1817). Research permit number (Auckland Council WS1437).

Phylum Additionaterician Chinoffeedical Protocolated Verneconcensional Figure 4: Relative abundance of the most abundant phyla surrounding kauri trees from the six different plots.

Armatimonadota Desufboaterota Germatimonadota Myxococcota Sumeria Phylum Bacteroidota Desufboaterota Latescibacterota NB1-j WS4-Bdellovibrionota FCPU426 MBNT15 Patescibacteria WS4 WS4 WS4 WS4 Figure 5: Relative abundance of the least abundant phyla surrounding kauri trees from the six different plots.

Figure 6: Principal Coordinates Analysis (PCoA) plots showing bacterial community composition between site location. Community dissimilarity scores calculated using Bray Curtis index.

Relative abundance of the most abundant phyla showed minimal variation. Most variation was identified in the Cascades asymptomatic, Piha asymptomatic and Huia symptomatic sites (Figure 4).

- Relative abundance of the least abundant phyla highlights more variation, especially between the Cascades asymptomatic and Huia asymptomatic sites (Figure 5).
- No major groupings of bacterial community composition were identified based on site location (Figure 6).

FUTURE WORK

 Provide a baseline of soil health to help monitor the effects kauri dieback may have on the soil microbial communities in the Waitākere Ranges.